无理数,也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。
根号5是无理数吗
根号5是无理数。常见的无理数有非完全平方数的平方根、π和e(其中后两者均为超越数)等,无理数的特征是无限的连分数表达式,无理数最早由毕达哥拉斯学派弟子希伯索斯发现。
证明过程
1.设根号下5不是无理数而是有理数,则设根号下5=p/q(p,q是正整数,且互为质数,即最大公约数是1)。
2.两边平方,5=p^2/q^2, p^2=5q^2(*)。
3.p^2含有因数5,设p=5m,代入(*),25m^2=5q^2, q^2=5m^2,q^2含有因数5,即q有因数5。
4.这样p,q有公因数5,这与假设p,q最大公约数为1矛盾。
5.根号下5=p/q(p,q是正整数,且互为质数,即最大公约数是1)不成立,
所以,根号下5不是有理数而是无理数。
还没有评论,来说两句吧...