本文作者:三岁教程网

正切函数的性质

三岁教程网 2022-07-08 00:00:00 107 抢沙发

正切函数的性质:

1、定义域:{x|x≠(π/2)+kπ,k∈Z}。
2、值域:实数集R。
3、奇偶性:奇函数。
4、单调性:在区间(-π/2+kπ,π/2+kπ),(k∈Z)上是增函数。
5、周期性:最小正周期π(可用T=π/|ω|来求)。
6、最值:无最大值与最小值。
7、零点:kπ,k∈Z。
8、对称性:无轴对称:无对称轴中心对称:关于点(kπ/2+π/2,0)对称(k∈Z)。
9、奇偶性:由tan(-x)=-tan(x),知正切函数是奇函数,它的图象关于原点呈中心对称。
10、图像(如图所示)实际上,正切曲线除了原点是它的对称中心以外,所有x=(n/2)π(n∈Z)都是它的对称中心。


    
     正切函数的性质

在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。
法兰西斯·韦达(FrançoisViète)曾在他对三角法研究的第一本著作《应用于三角形的数学法则》中提出正切定理。现代的中学课本已经甚少提及,例如由于中华人民共和国曾经对前苏联和其教育学的批判,在1966年至1977年间曾经将正切定理删除出中学数学教材。不过在没有计算机的辅助求解三角形时,这定理可比余弦定理更容易利用对数来运算投影等问题。


    
     正切函数的性质

正切定理:(a+b)/(a-b)=tan((α+β)/2)/tan((α-β)/2)
tanA·tanB·tan(A+B)+tanA+tanB-tan(A+B)=0
高等代数中三角函数的指数表示(由泰勒级数易得):
sinx=[e^(ix)-e^(-ix)]/(2i)
cosx=[e^(ix)+e^(-ix)]/2
tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]
tanA·tanB=1

文章版权及转载声明

作者:三岁教程网本文地址:http://ssjcw.com/?id=77094发布于 2022-07-08 00:00:00
文章转载或复制请以超链接形式并注明出处三岁教程网

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

阅读
分享

发表评论

快捷回复:

评论列表 (暂无评论,107人围观)参与讨论

还没有评论,来说两句吧...