实数与向量的积的运算律:设λ,μ为实数
结合律:λ(μa)=(λμ)a;
第一分配律:(λ+μ)a=λa+μa;
第二分配律:λ(a+b)=λa+μb;
向量的数量积的运算律:
(1)a·b=b·a
(2)(λa)·b=λ(a·b)=λa·b=a·(λb)
(3)(a+b)·c=a·c+b·ca与b的数量积:a·b=|a||b|cosθ。a与b的数量积坐标运算:设a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2
向量积含义:
向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量和垂直。其应用也十分广泛,通常应用于物理学光学和计算机图形学中。
还没有评论,来说两句吧...